White Spot Syndrome Virus Proteins and Differentially Expressed Host Proteins Identified in Shrimp Epithelium by Shotgun Proteomics and Cleavable Isotope-Coded Affinity Tag

Author:

Wu Jinlu1,Lin Qingsong1,Lim Teck Kwang1,Liu Tiefei1,Hew Choy-Leong1

Affiliation:

1. Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore

Abstract

ABSTRACT Shrimp subcuticular epithelial cells are the initial and major targets of white spot syndrome virus (WSSV) infection. Proteomic studies of WSSV-infected subcuticular epithelium of Penaeus monodon were performed through two approaches, namely, subcellular fractionation coupled with shotgun proteomics to identify viral and host proteins and a quantitative time course proteomic analysis using cleavable isotope-coded affinity tags (cICATs) to identify differentially expressed cellular proteins. Peptides were analyzed by offline coupling of two-dimensional liquid chromatography with matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry. We identified 27, 20, and 4 WSSV proteins from cytosolic, nuclear, and membrane fractions, respectively. Twenty-eight unique WSSV proteins with high confidence (total ion confidence interval percentage [CI%], >95%) were observed, 11 of which are reported here for the first time, and 3 of these novel proteins were shown to be viral nonstructural proteins by Western blotting analysis. A first shrimp protein data set containing 1,999 peptides (ion score, ≥20) and 429 proteins (total ion score CI%, >95%) was constructed via shotgun proteomics. We also identified 10 down-regulated proteins and 2 up-regulated proteins from the shrimp epithelial lysate via cICAT analysis. This is the first comprehensive study of WSSV-infected epithelia by proteomics. The 11 novel viral proteins represent the latest addition to our knowledge of the WSSV proteome. Three proteomic data sets consisting of WSSV proteins, epithelial cellular proteins, and differentially expressed cellular proteins generated in the course of WSSV infection provide a new resource for further study of WSSV-shrimp interactions.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3