Detection of Salmonella serovars from clinical samples by enrichment broth cultivation-PCR procedure

Author:

Stone G G1,Oberst R D1,Hays M P1,McVey S1,Chengappa M M1

Affiliation:

1. Department of Veterinary Diagnostic Investigation, College of Veterinary Medicine, Kansas State University, Manhattan 66506.

Abstract

To overcome problems associated with application of PCR to clinical samples, we have combined a short cultivation procedure with a Salmonella-specific PCR-hybridization assay to specifically identify Salmonella serovars from clinical samples of various animal species. The technique was investigated by using fecal samples seeded with known numbers of Salmonella organisms and cultivated for different lengths of time in assorted selective and nonselective enrichment media. The ability of PCR to amplify a Salmonella-specific DNA product (457-bp sequence covering the Salmonella invE and invA genes) was examined in Southern hybridizations with an internal oligonucleotide probe. Forty-seven Salmonella isolates representing 32 serovars were evaluated, and all Salmonella isolates resulted in a 457-bp product that hybridized with the oligonucleotide probe, whereas no hybridizations were evident with 53 non-Salmonella organisms. The assay detected as few as 9 CFU of Salmonella organisms in pure culture and as little as 300 fg of purified chromosomal DNA. Rappaport-Vassiliadis and tetrathionate broths were inhibitory to PCR, whereas brain heart infusion and selenite-cystine broths were not. The PCR-hybridization assay coupled with a brain heart infusion enrichment culture incubated for 2 h detected as few as 80 CFU of Salmonella organisms in seeded feces. We have successfully identified Salmonella serovars in clinical samples from swine, horses, and cattle more rapidly than with conventional culture techniques. The sensitivity and specificity of this assay were both 100% compared with culture results. These results indicate that a combined cultivation-PCR-hybridization assay could be applicable and advantageous in the rapid identification of Salmonella serovars in routine diagnostic situations.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3