Affiliation:
1. University of Texas Graduate School of Biomedical Sciences
2. University of Texas Medical School
3. Baylor College of Medicine
4. University of Texas School of Public Health
5. St. Luke's Episcopal Hospital, Houston Texas
Abstract
ABSTRACT
Diarrhea is one of the most common infirmities affecting international travelers, occurring in 20 to 50% of persons from industrialized countries visiting developing regions. Enterotoxigenic
Escherichia coli
(ETEC) is the most common causative agent and is isolated from approximately half of the cases of traveler's diarrhea. Rifaximin, a largely water-insoluble, nonabsorbable (<0.4%) antibiotic that inhibits bacterial RNA synthesis, is approved for use for the treatment of traveler's diarrhea caused by diarrheagenic
E. coli
. However, the drug has minimal effect on the bacterial flora or the infecting
E. coli
strain in the aqueous environment of the colon. The purpose of the present study was to evaluate the antimicrobial effect and bioavailability of rifaximin in aqueous solution in the presence and absence of physiologic concentrations of bile acids. The methods used included growth measurement of ETEC (strain H10407), rifaximin solubility measurements, total bacterial protein determination, and assessment of the functional activity of rifaximin by monitoring inhibition of bacterial β-galactosidase expression. Solubility studies showed rifaximin to be 70- to 120-fold more soluble in bile acids (approximately 30% in 4 mM bile acids) than in aqueous solution. Addition of both purified bile acids and human bile to rifaximin at subinhibitory and inhibitory concentrations significantly improved the drug's anti-ETEC effect by 71% and 73%, respectively, after 4 h. This observation was confirmed by showing a decrease in the overall amount of total bacterial protein expressed during incubation of rifaximin plus bile acids. Rifaximin-treated samples containing bile acids inhibited the expression of ETEC β-galactosidase at a higher magnitude than samples that did not contain bile acids. The study provides data showing that bile acids solubilize rifaximin on a dose-response basis, increasing the drug's bioavailability and antimicrobial effect. These observations suggest that rifaximin may be more effective in the treatment of infections in the small intestine, due to the higher concentration of bile in this region of the gastrointestinal tract than in the colon. The water insolubility of rifaximin is the likely explanation for the drug's minimal effects on colonic flora and fecal pathogens, despite
in vitro
susceptibility.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献