In Vitro Activities of Posaconazole, Fluconazole, Itraconazole, Voriconazole, and Amphotericin B against a Large Collection of Clinically Important Molds and Yeasts

Author:

Sabatelli F.1,Patel R.1,Mann P. A.1,Mendrick C. A.1,Norris C. C.1,Hare R.1,Loebenberg D.1,Black T. A.1,McNicholas P. M.1

Affiliation:

1. Schering-Plough Research Institute, Kenilworth, New Jersey

Abstract

ABSTRACT The in vitro activity of the novel triazole antifungal agent posaconazole (Noxafil; SCH 56592) was assessed in 45 laboratories against approximately 19,000 clinically important strains of yeasts and molds. The activity of posaconazole was compared with those of itraconazole, fluconazole, voriconazole, and amphotericin B against subsets of the isolates. Strains were tested utilizing Clinical and Laboratory Standards Institute broth microdilution methods using RPMI 1640 medium (except for amphotericin B, which was frequently tested in antibiotic medium 3). MICs were determined at the recommended endpoints and time intervals. Against all fungi in the database (22,850 MICs), the MIC 50 and MIC 90 values for posaconazole were 0.063 μg/ml and 1 μg/ml, respectively. MIC 90 values against all yeasts (18,351 MICs) and molds (4,499 MICs) were both 1 μg/ml. In comparative studies against subsets of the isolates, posaconazole was more active than, or within 1 dilution of, the comparator drugs itraconazole, fluconazole, voriconazole, and amphotericin B against approximately 7,000 isolates of Candida and Cryptococcus spp. Against all molds (1,702 MICs, including 1,423 MICs for Aspergillus isolates), posaconazole was more active than or equal to the comparator drugs in almost every category. Posaconazole was active against isolates of Candida and Aspergillus spp. that exhibit resistance to fluconazole, voriconazole, and amphotericin B and was much more active than the other triazoles against zygomycetes. Posaconazole exhibited potent antifungal activity against a wide variety of clinically important fungal pathogens and was frequently more active than other azoles and amphotericin B.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3