Retrograde Axonal Transport: a Major Transmission Route of Enterovirus 71 in Mice

Author:

Chen Che-Szu1,Yao Yi-Chuan1,Lin Shin-Chao1,Lee Yi-Ping2,Wang Ya-Fang2,Wang Jen-Ren3,Liu Ching-Chuan4,Lei Huan-Yao1,Yu Chun-Keung1

Affiliation:

1. Department of Microbiology and Immunology

2. Institute of Basic Medical Sciences

3. Department of Medical Laboratory Science and Biotechnology

4. Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China

Abstract

ABSTRACT Inoculation of enterovirus 71 (EV71) by the oral (p.o.), intramuscular (i.m.), or intracranial route resulted in brain infection, flaccid paralysis, pulmonary dysfunction, and death of 7-day-old mice. The lag time of disease progression indicated that neuroinvasion from the inoculation sites was a prerequisite for the development of the clinical signs. Although EV71 p.o. inoculation led to a persistent viremia and a transient increase in blood-brain barrier permeability at the early stage of the infection, only low levels of virus, which led to neither severe infection nor clinical illness, could be detected in the brain, suggesting that hematogenous transport might not represent a major transmission route. In the spinal cord, following both p.o. and hind limb i.m. inoculation, the virus first appeared and increased rapidly in the lower segments, especially at the anterior horn areas, and then spread to the upper segments and brain in the presence of viremia. A reverse pattern, with the virus being first detected in the upper segment, was observed when the virus was i.m. inoculated in the forelimb. Colchicine, a fast axonal transport inhibitor, but not sciatic nerve transection reduced EV71 neuroinvasion in a dose-dependent manner, indicating a neuronal transmission of the virus.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3