Role of SP65 in Assembly of the Dictyostelium discoideum Spore Coat

Author:

Metcalf Talibah1,van der Wel Hanke1,Escalante Ricardo2,Sastre Leandro2,West Christopher M.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104

2. Instituto de Investigaciones Biomédicas Alberto Sols, C.S.I.C./U.A.M., Arturo Duperier 4, 28029 Madrid, Spain

Abstract

ABSTRACT Like the cyst walls of other protists, the spore coat of Dictyostelium discoideum is formed de novo to protect the enclosed dormant cell from stress. Spore coat assembly is initiated by exocytosis of protein and polysaccharide precursors at the cell surface, followed by the infusion of nascent cellulose fibrils, resulting in an asymmetrical trilaminar sandwich with cellulose filling the middle layer. A molecular complex consisting of cellulose and two proteins, SP85 and SP65, is associated with the inner and middle layers and is required for proper organization of distinct proteins in the outer layer. Here we show that, unlike SP85 and other protein precursors, which are stored in prespore vesicles, SP65 is, like cellulose, synthesized just in time. By tagging the SP65 locus with green fluorescent protein, we find that SP65 is delivered to the cell surface via largely distinct vesicles, suggesting that separate delivery of components of the cellulose-SP85-SP65 complex regulates its formation at the cell surface. In support of previous in vivo studies, recombinant SP65 and SP85 are shown to interact directly. In addition, truncation of SP65 causes a defect of the outer layer permeability barrier as seen previously for SP85 mutants. These observations suggest that assembly of the cellulose-SP85-SP65 triad at the cell surface is biosynthetically regulated both temporally and spatially and that the complex contributes an essential function to outer layer architecture and function.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3