Author:
Gaillardin C M,Magasanik B
Abstract
Mutations in a site, glnF, linked by P1-mediated transduction of argG on the chromosome of Klebsiella aerogenes, result in a requirement for glutamine. Mutants in this gene have in all media a level of glutamine synthetase (GS) corresponding to the level found in the wild-type strain grown in the medium producing the strongest repression of GS. The adenylylation and deadenylylation of GS in glnF mutants is normal. The glutamine requirement of glnF mutants could be suppressed by mutations in the structural gene for GS, glnA. These mutations result in altered regulation of GS synthesis, regardless of the presence or absence of the glnF mutation (GlnR phenotype). In GlnR mutants the GS level is higher than in the wild-type strain when the cells are cultured in strongly repressing medium, but lower than in the wild-type strain when cells are cultured in a derepressing medium. Heterozygous merodiploids carrying a normal glnA gene as well as a glnA gene responsible for the GlnR phenotype behave in every respect like merodiploids carrying two normal glnA genes. These results confirm autogenous regulation of GS synthesis and indicate that GS is both a repressor and an activator of GS synthesis. The mutation in glnA responsible for the GLnR phenotype has apparently resulted in the formation of a GS that is incompetent both as repressor and as activator of GS synthesis. According to this hypothesis, the product of the glnF gene is necessary for activation of the glnA gene by GS.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献