Truncation of the Cytoplasmic Domain Induces Exposure of Conserved Regions in the Ectodomain of Human Immunodeficiency Virus Type 1 Envelope Protein

Author:

Edwards Terri G.1,Wyss Stéphanie2,Reeves Jacqueline D.1,Zolla-Pazner Susan34,Hoxie James A.2,Doms Robert W.1,Baribaud Frédéric1

Affiliation:

1. Department of Microbiology

2. Hematology-Oncology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104

3. New York University School of Medicine, New York, New York 10016

4. Research Center for AIDS and HIV Infection, New York Harbor Veterans Affairs Medical Center, New York, New York 10010

Abstract

ABSTRACT We have described a CD4-independent variant of HXBc2, termed 8x, that binds directly to CXCR4 and mediates CD4-independent virus infection. Determinants for CD4 independence map to residues in the V3 and V4-C4 domains together with a single nucleotide deletion in the transmembrane domain which introduces a frameshift (FS) at position 706. This FS results in a truncated cytoplasmic domain of 27 amino acids. We demonstrate here that while introduction of the 8x FS mutation into heterologous R5, X4, or R5X4 Env proteins did not impart CD4 independence, it did affect the conformation of the gp120 surface subunit, exposing highly conserved domains involved in both coreceptor and CD4 binding. In addition, antigenic changes in the gp41 ectodomain were also observed, consistent with the idea that the effects of cytoplasmic domain truncation must in some way be transmitted to the external gp120 subunit. Truncation of gp41 also resulted in the marked neutralization sensitivity of all Env proteins tested to human immunodeficiency virus-positive human sera and monoclonal antibodies directed against the CD4 or coreceptor-binding sites. These results demonstrate a structural interdependence between the cytoplasmic domain of gp41 and the ectodomain of the Env protein. They also may help explain why the length of the gp41 cytoplasmic domain is retained in vivo and may provide a way to genetically trigger the exposure of neutralization determinants in heterologous Env proteins that may prove useful for vaccine development.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3