Affiliation:
1. Department of Bacteriology, University of Wisconsin-Madison 53706.
Abstract
Staphylococcal enterotoxin type A (SEA) gene (sea+) mutations were constructed by exonuclease III digestion or cassette mutagenesis. Five different sea mutations that had 1, 3, 7, 39, and 65 codons deleted from the 3' end of sea+ were identified and confirmed by restriction enzyme and nucleotide sequence analyses. Each of these sea mutations was constructed in Escherichia coli and transferred to Staphylococcus aureus by using the plasmid vector pC194. Culture supernatants from the parent S. aureus strain that lacked an enterotoxin gene (negative controls) and from derivatives that contained either sea+ (positive control) or a sea mutation were examined for in vitro sensitivity to degradation by monkey stomach lavage fluid, the ability to cause emesis when administered by an intragastric route to rhesus monkeys, and the ability to induce T-cell proliferation and by Western immunoblot analysis and a gel double-diffusion assay with polyclonal antibodies prepared against SEA. Altered SEAs corresponding to the predicted sizes were visualized by Western blot analysis of culture supernatants for each of the staphylococcal derivatives that contained a sea mutation. The altered SEA that lacked the C-terminal amino acid residue behaved like SEA in all of the assays performed. The altered SEA that lacked the three C-terminal residues of SEA caused T-cell proliferation but was not emetic; this altered SEA was degraded in vitro by monkey stomach lavage fluid and did not reach in the gel double diffusion assay. Altered SEAs that lacked 7, 39, or 65 carboxyl-terminal residues were degraded by stomach lavage fluid in vitro, did not produce an emetic response, and did not induce T-cell proliferation or form a visible reaction in the gel double-diffusion assay.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Reference38 articles.
1. Relationship between enterotoxic- and T Iymphocyte-stimulating activity of staphylococcal enterotoxin B;Alber G.;J. Immunol.,1990
2. Ausubel F. M. B. Roger R. E. Kingston D. D. Moore J. G. Seidman S. A. Smith and K. Struhl. 1987. Current protocols in molecular biology. John Wiley & Sons Inc. New York.
3. Genetic and molecular analysis of the gene encoding staphylococcal enterotoxin D;Bayles K. W.;J. Bacteriol.,1989
4. Bergdoll M. S. 1983. Enterotoxins p. 559-598. In C. S. F. Easmon and C. Adlam (ed.) Staphylococci and staphylococcal infections. Academic Press Inc. New York.
5. Staphylococcal enterotoxin A gene is associated with a variable genetic element;Betley M. J.;Proc. Natl. Acad. Sci. USA,1984
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献