Abstract
ABSTRACT
Streptococcus pneumoniae is one of the leading pathogens that cause a variety of mucosal and invasive infections. With the increased emergence of multidrug-resistant S. pneumoniae, new antimicrobials with mechanisms of action different from conventional antibiotics are urgently needed. In this study, we identified a putative lysin (gp20) encoded by the Streptococcus phage SPSL1 using the LytA autolysin as a template. Molecular dissection of gp20 revealed a binding domain (GPB) containing choline-binding repeats (CBRs) that are high specificity for S. pneumoniae. By fusing GPB to the CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) catalytic domain of the PlyC lysin, we constructed a novel chimeric lysin, ClyJ, with improved activity to the pneumococcal Cpl-1 lysin. No resistance was observed in S. pneumoniae strains after exposure to incrementally doubling concentrations of ClyJ for 8 continuous days in vitro. In a mouse bacteremia model using penicillin G as a control, a single intraperitoneal injection of ClyJ improved the survival rate of lethal S. pneumoniae-infected mice in a dose-dependent manner. Given its high lytic activity and safety profile, ClyJ may represent a promising alternative to combat pneumococcal infections.
Funder
National Science Centre of Poland
National Natural Science Foundation of China
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献