Two bactericidal targets for penicillin in pneumococci: autolysis-dependent and autolysis-independent killing mechanisms

Author:

Moreillon P1,Markiewicz Z1,Nachman S1,Tomasz A1

Affiliation:

1. Laboratory of Microbiology, Rockefeller University, New York, New York 10021.

Abstract

It has been assumed that penicillin (and also other cell wall inhibitors) kill pneumococci predominantly by triggering their major autolytic enzyme (an N-acetylmuramoyl-L-alanine amidase; referred to as amidase), resulting in massive cell wall degradation. Three types of experiments suggest that only part of this killing is due to cell lysis by amidase. (i) Suppression of penicillin-induced lysis by specific inhibitors of amidase protected pneumococci only marginally from killing in spite of prolonged exposure to concentrations of penicillin that were 10x, 20x, or 100x greater than the MIC. (ii) Mutants from which the amidase was completely eliminated by plasmid insertion or deletion (Lyt-) were still killed, albeit at a slower rate than the wild-type Lyt+ strains (3 to 4 log units instead of 4 to 5 log units per 6 h, i.e., about 1 log unit slower than the wild type; P less than 0.001). (iii) A new mutation (cid), which was not related to the amidase gene, further reduced killing of mutants lacking amidase to 1 log unit per 6 h (Lyt- Cid- phenotype). Reintroduction of the amidase gene into Lyt- Cid- cells partially restored penicillin-induced lysis but increased only slightly the rate of killing (from 1 log unit per 6 h in Lyt- Cid- cells to 2 log units per 6 h in Lyt+ Cid- cells). We conclude that penicillin kills pneumococci by two distinct mechanisms: one that involves the triggering of the amidase (about 1 log unit of killing per 6 h) and another, amidase-independent mechanism that is responsible for 3 to 4 log units of killing per 6 h. Triggering of the amidase activity in situ in growing bacteria was significantly reduced in Lyt+ Cid- cells, indicating that there is some regulatory interaction between the cid gene product and the amidase.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3