Novel plasmid-mediated beta-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy beta-lactams in clinical isolates of Klebsiella pneumoniae

Author:

Papanicolaou G A1,Medeiros A A1,Jacoby G A1

Affiliation:

1. Division of Infectious Diseases, Miriam Hospital, Providence, Rhode Island 02906.

Abstract

Klebsiella pneumoniae isolates from 11 patients at the Miriam Hospital were identified as resistant to cefoxitin and ceftibuten as well as to aztreonam, cefotaxime, and ceftazidime. Resistance could be transferred by conjugation or transformation with plasmid DNA into Escherichia coli and was due to the production of a beta-lactamase with an isoelectric point of 8.4 named MIR-1. In E. coli, MIR-1 conferred resistance to aztreonam, cefotaxime, ceftazidime, ceftibuten, ceftriaxone, and such alpha-methoxy beta-lactams as cefmetazole, cefotetan, cefoxitin, and moxalactam. In vitro, MIR-1 hydrolyzed cephalothin and cephaloridine much more rapidly than it did penicillin G, ampicillin, or carbenicillin. Cefotaxime was hydrolyzed at 10% the rate of cephaloridine. Cefoxitin inactivation could only be detected by a microbiological test. The inhibition profile of MIR-1 was similar to that of chromosomally mediated class I beta-lactamases. Potassium clavulanate had little effect on cefoxitin or cefibuten resistance and was a poor inhibitor of MIR-1 activity. Cefoxitin or imipenem did not induce MIR-1. The gene determining MIR-1 was cloned on a 1.4-kb AccI-PstI fragment. Under stringent conditions, probes for TEM-1 and SHV-1 genes and the E. coli ampC gene failed to hybridize with the MIR-1 gene. However, a provisional sequence of 150 bp of the MIR-1 gene proved to be 90% identical to the sequence of ampC from Enterobacter cloacae but only 71% identical to that of E. coli, thus explaining the lack of hybridization to the E. coli ampC probe. Plasmid profiles of the 11 K. pneumoniae clinical isolates were not identical, but each contained a plasmid from 40 to 60 kb that hybridized with the cloned MIR-1 gene. Both transfer-proficient and transfer-deficient MIR-1 plasmids belonged to the N incompatibility group. Thus, the resistance of these K. pneumoniae strains was the result of plasmid acquisition of a class I beta-lactamase, a new resistance determinant that expands the kinds of beta-lactam resistance capable of spread by plasmid dissemination among clinical isolates.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3