Purification and Properties of a Novel Xanthan Depolymerase from a Salt-Tolerant Bacterial Culture, HD1

Author:

Hou Ching T.1,Barnabe Nancy1,Greaney Kathy1

Affiliation:

1. Corporate Research Sciences Laboratory, Exxon Research and Engineering Co., Annandale, New Jersey 08801

Abstract

A novel xanthan depolymerase (endo-β-1,4-glucanase) was isolated from a salt-tolerant bacteria culture (HD1) grown on xanthan. The depolymerase was purified 55-fold through chromatography on ion-exchange and molecular sieve columns, including high-performance liquid chromatography. The purified enzyme fraction was homogeneous as judged by polyacrylamide gel electrophoresis. The molecular weight of this enzyme is 60,000. Optimum pH and temperature for xanthan depolymerase activity were around 5 and 30 to 35°C, respectively. The enzyme was not stable at a temperature higher than 45°C. The activation energy calculated from an Arrhenius plot was 6.40 kcal (26.78 kJ). The enzyme molecule contains no sugar moiety. The amino acid composition of the enzyme protein was determined. Xanthan depolymerase cleaves the endo-β-1,4-glucosidic linkage of the xanthan molecule, freeing reducing groups of some sugars and decreasing viscosity of the polymer solution. Only the backbones of β-1,4-linked glucans with side chains or other substituents were cleaved. No monosaccharide was produced by the action of this enzyme. The oligosac-charide(s) in the low-molecular weight fraction consisted of 15 to 58 monosaccharide units. The enzymic reaction resulted in the decrease in weight-average molecular weight of xanthan from 6.5 × 10 6 to 8.0 × 10 5 in 0.5 h. This enzyme alone could not degrade xanthan to a single or multiple pentasaccharide unit(s). Results suggest that there may be regions inside the xanthan molecule that are susceptible to the attack of this enzyme. Xanthan depolymerase activity was not inhibited by many chemicals, including thiols, antioxidants, chlorinated hydrocarbons, metal-chelating agents, and inorganic compounds, except ferric chloride and arsenomolybdate. Many biocides were tested and found not to be inhibitory. Conditions used in enhanced oil recovery operations, i.e., the presence of formaldehyde, Na 2 S 2 O 4 , 2,2-dibromo-3-nitrilopropionamide, and an anaerobic environment, did not inhibit xanthan depolymerase activity.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3