Factors Influencing Survival of Legionella pneumophila Serotype 1 in Hot Spring Water and Tap Water

Author:

Ohno Akira1,Kato Naoyuki2,Yamada Koji3,Yamaguchi Keizo1

Affiliation:

1. Departments of Microbiology

2. Chemistry, Toho University School of Medicine, Tokyo

3. Department of Chemistry, Faculty of Science, Toho University, Chiba, Japan

Abstract

ABSTRACT The factors involved in the survival of Legionella pneumophila in the microcosms of both hot spring water and tap water were studied by examining cultivability and metabolic activity. L. pneumophila could survive by maintaining metabolic activity but was noncultivable in all microcosms at 42°C, except for one microcosm with a pH of <2.0. Lower temperatures supported survival without loss of cultivability. The cultivability declined with increasing temperature, although metabolic activity was observed at temperatures of up to 45°C. The optimal range of pH for survival was between 6.0 and 8. The metabolic activity could be maintained for long periods even in microcosms with high concentrations of salt. The cultivability of organisms in the post-exponential phase in a tap water microcosm with a low inoculum size was more rapidly reduced than that of organisms in the exponential phase. In contrast, the loss of cultivability in microcosms of a high inoculum size was significant in the exponential phase. Random(ly) amplified polymorphic DNA analysis of microcosms where cultivability was lost but metabolic activity was retained showed no change compared to cells grown freshly, although an effect on the amplified DNA band pattern by production of stress proteins was expected. Resuscitation by the addition of Acanthamoeba castellanii to the microcosm in which cultivability was completely lost but metabolic activity was maintained was observed only in part of the cell population. Our results suggest that L. pneumophila cell populations can potentially survive as free organisms for long periods by maintaining metabolic activity but temporarily losing cultivability under strict environments and requiring resuscitation by ingestion by amoebas.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3