Are Readily Culturable Bacteria in Coastal North Sea Waters Suppressed by Selective Grazing Mortality?

Author:

Beardsley Christine1,Pernthaler Jakob1,Wosniok Werner2,Amann Rudolf1

Affiliation:

1. Max Planck Institute for Marine Microbiology

2. Institute for Statistics, University of Bremen, D-28359 Bremen, Germany

Abstract

ABSTRACT We studied the growth of six culturable bacterial lineages from coastal North Sea picoplankton in environmental samples under different incubation conditions. The grazing pressure of heterotrophic nanoflagellates (HNF) was reduced either by double prefiltration through 0.8-μm-pore-size filters or by 10-fold dilutions with 0.2-μm (pore-size) prefiltered seawater. We hypothesized that those γ-proteobacterial genera that are rapidly enriched would also be most strongly affected by HNF regrowth. In the absence of HNF, the mean protein content per bacterial cell increased in both treatments compared to environmental samples, whereas the opposite trend was found in incubations of unaltered seawater. Significant responses to the experimental manipulations were observed in Alteromonas , Pseudoalteromonas , and Vibrio populations. No treatment-specific effects could be detected for members of the Roseobacter group, the Cytophaga latercula-C. marinoflava lineage, or the NOR5 clade. Statistical analysis confirmed a transient increase in the proportions of Alteromonas , Pseudoalteromonas , and Vibrio cells at reduced HNF densities only, followed by an overproportional decline during the phase of HNF regrowth. Cells from these genera were significantly larger than the community average in the dilution treatments, and changes in their relative abundances were negatively correlated with HNF densities. Our findings suggest that bacteria affiliated with frequently isolated genera such as Alteromonas , Pseudoalteromonas , and Vibrio might be rare in coastal North Sea picoplankton because their rapid growth response to changing environmental conditions is counterbalanced by a higher grazing mortality.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3