Affiliation:
1. Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
Abstract
ABSTRACT
A viability quantitative PCR (v-qPCR) assay was developed for the unambiguous detection and quantification of
Lactobacillus plantarum
PM411 viable cells in aerial plant surfaces. A 972-bp region of a PM411 predicted prophage with mosaic architecture enabled the identification of a PM411 strain-specific molecular marker. Three primer sets with different amplicon lengths (92, 188, and 317 bp) and one TaqMan probe were designed. All the qPCR assays showed good linearity over a 4-log range and good efficiencies but differed in sensitivity. The nucleic acid-binding dye PEMAX was used to selectively detect and enumerate viable bacteria by v-qPCR. The primer set amplifying a 188-bp DNA fragment was selected as the most suitable for v-qPCR. The performance of the method was assessed on apple blossoms, pear, strawberry, and kiwifruit leaves in potted plants under controlled environmental conditions, as well as pear and apple blossoms under field conditions, by comparing v-qPCR population estimations to those obtained by qPCR and specific plate counting on de Man-Rogosa-Sharpe (MRS)-rifampin. The population estimation did not differ significantly between methods when conditions were conducive to bacterial survival. However, under stressful conditions, differences between methods were observed due to cell death or viable-but-nonculturable state induction. While qPCR overestimated the population level, plate counting underestimated this value in comparison to v-qPCR. PM411 attained stable population levels of viable cells on the flower environment under high relative humidity. However, the unfavorable conditions on the leaf surface and the relatively dryness in the field caused an important decrease in the viable population.
IMPORTANCE
The v-qPCR method in combination with plate counting and qPCR is a powerful tool for studies of colonization and survival under field conditions, to improve formulations and delivery strategies of PM411, and to optimize the dose and timing of spray schedules. It is expected that PEMAX v-qPCR could also be developed for monitoring other strains on plant surfaces not only as biological control agents but also beneficial bacteria useful in the sustainable management of crop production.
Funder
Ministerio de Economía y Competitividad
Generalitat de Catalunya
EC | FP7 | FP7 Food, Agriculture and Fisheries, Biotechnology
Universitat de Girona
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献