Affiliation:
1. Department of Biology, University of Mississippi, University 38677.
Abstract
The mechanism of nickel transport by Clostridium pasteurianum was investigated by using 63NiCl2 and a microfiltration transport assay. Nickel transport was energy dependent, requiring either glucose or sucrose; xylose and o-methyl glucose did not support growth, butyrogenesis, or transport. Transport was optimum at pH 7 and 37 degrees C, and early-stationary-phase cells had the highest propensity for nickel transport. The apparent Km and Vmax for nickel transport approximated 85 microM Ni and 1,400 pmol of Ni transported per min per mg (dry weight) of cells, respectively. On the basis of metal specificity, nickel appears to be transported primarily by a magnesium transporter, although an alternative nickel transporter may also be involved. ATPase inhibitors (N,N'-dicyclohexylcarbodiimide, tributyltin chloride, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole, and quercetin), protonophores (carbonyl cyanide m-chlorophenylhydrazone, 2,4-dinitrophenol, and gramicidin D), metal ionophores (valinomycin, monensin, and nigericin), benzyl viologen, carbon monoxide, and oxygen inhibited nickel transport. Nickel transport was coupled indirectly to butyrogenesis and was dependent on the energy state of the cell.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献