Mode of action of the staphylococcinlike peptide Pep 5: voltage-dependent depolarization of bacterial and artificial membranes

Author:

Kordel M1,Benz R1,Sahl H G1

Affiliation:

1. Institut für Medizinische Mikrobiologie und Immunologie, Universität Bonn, Bonn-Venusberg, Federal Republic of Germany.

Abstract

The cationic staphylococcinlike peptide Pep 5 is shown to depolarize bacterial and planar lipid membranes in a voltage-dependent manner. An artificial valinomycin-induced potassium diffusion potential across the cytoplasmic membrane of Staphylococcus cohnii 22 was sufficient to promote Pep 5 action. Thus, evidence is provided that a membrane potential of sufficient magnitude is the only prerequisite for Pep 5 activity. The voltage dependence was elucidated by macroscopic conductance measurements with black lipid membranes. A threshold potential of about -90 to -100 mV, which was deduced from experiments with bacterial cells, could be confirmed. Single pores were resolved which often occur as short-lived bursts and fluctuate among different conductance levels. Pore diameters were calculated ranging from 0.1 to 1 nm. Succinylation of the lysine residues of Pep 5 resulted in prolonged pore lifetimes and maintenance of distinct conductance levels. However, the succinylated peptide required a higher threshold potential, approximately -150 mV, than the native peptide, which is probably the reason for the reduced activity of the modified peptide against intact gram-positive bacteria.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3