Affiliation:
1. Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814.
Abstract
The rff genes of Salmonella typhimurium include structural genes for enzymes involved in the conversion of UDP N-acetyl-D-glucosamine (UDP-GlcNAc) to UDP N-acetyl-D-mannosaminuronic acid (UDP-ManNAcA), the donor of ManNAcA residues in enterobacterial common antigen (ECA) synthesis. An rff mutation (rff-726) of Escherichia coli has been described (U. Meier and H. Mayer, J. Bacteriol. 163:756-762, 1985) that abolished ECA synthesis but which did not affect the synthesis of UDP-ManNAcA or any other components of ECA. The nature of the enzymatic defect resulting from the rff-726 lesion was investigated in the present study. The in vitro synthesis of GlcNAc-pyrophosphorylundecaprenol (lipid I), an early intermediate in ECA synthesis, was demonstrated by using membranes prepared from a mutant of E. coli possessing the rff-726 lesion. However, in vitro synthesis of the next lipid-linked intermediate in the biosynthetic sequence, ManNAcA-GlcNAc-pyrophosphorylundecaprenol (lipid II), was severely impaired. Transduction of wild-type rff genes into the mutant restored the ability to synthesize both lipid II and ECA as determined by in vitro assay and Western blot (immunoblot) analyses done with anti-ECA monoclonal antibody, respectively. Our results are consistent with the conclusion that the rff-726 mutation is located in the structural gene for the transferase that catalyzes the transfer of ManNAcA from UDP-ManNAcA to lipid I.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献