Author:
Beauchemin Nicholas J.,Furnholm Teal,Lavenus Julien,Svistoonoff Sergio,Doumas Patrick,Bogusz Didier,Laplaze Laurent,Tisa Louis S.
Abstract
ABSTRACTThe actinomycete genusFrankiaforms nitrogen-fixing symbioses with 8 different families of actinorhizal plants, representing more than 200 different species. Very little is known about the initial molecular interactions betweenFrankiaand host plants in the rhizosphere. Root exudates are important inRhizobium-legume symbiosis, especially for initiating Nod factor synthesis. We measured differences inFrankiaphysiology after exposure to host aqueous root exudates to assess their effects on actinorhizal symbioses.Casuarina cunninghamianaroot exudates were collected from plants under nitrogen-sufficient and -deficient conditions and tested onFrankiasp. strain CcI3. Root exudates increased the growth yield ofFrankiain the presence of a carbon source, butFrankiawas unable to use the root exudates as a sole carbon or energy source. Exposure to root exudates caused hyphal “curling” inFrankiacells, suggesting a chemotrophic response or surface property change. Exposure to root exudates altered Congo red dye binding, which indicated changes in the bacterial surface properties at the fatty acid level. Fourier transform infrared spectroscopy (FTIR) confirmed fatty acid changes and revealed further carbohydrate changes.Frankiacells preexposed toC. cunninghamianaroot exudates for 6 days formed nodules on the host plant significantly earlier than control cells. These data support the hypothesis of early chemical signaling between actinorhizal host plants andFrankiain the rhizosphere.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献