Affiliation:
1. Division of Molecular Biology of the Cell II, German Cancer Research Center, Heidelberg, Germany
Abstract
ABSTRACT
Epigenetic control mechanisms silence about half of the rRNA genes in eukaryotes. Previous studies have demonstrated that recruitment of NoRC, a SNF2h-containing remodeling complex, silences rRNA gene transcription. NoRC mediates histone H4 deacetylation, histone H3-Lys9 dimethylation, and de novo DNA methylation, thus establishing heterochromatic features at the rRNA gene promoter. Here we show that inhibition of any of these activities alleviates NoRC-dependent silencing, indicating that these processes are intimately linked. We have studied the temporal order of epigenetic events at the rRNA gene promoter during gene silencing and demonstrate that recruitment of NoRC by TTF-I is a prerequisite for the deacetylation of histone H4 and the dimethylation of histone H3-Lys9. Inhibition of histone deacetylation prevents DNA methylation, while inhibition of DNA methylation does not affect histone modification. Importantly, ATP-dependent chromatin remodeling is required for methylation of a specific CpG dinucleotide within the upstream control element of the rRNA gene promoter, and this modification impairs preinitiation complex formation. The results of this study reveal a clear hierarchy of epigenetic events that control de novo DNA methylation and lead to silencing of RNA genes.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
149 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献