Apoptotic Signaling Pathway Activated by Helicobacter pylori Infection and Increase of Apoptosis-Inducing Activity under Serum-Starved Conditions

Author:

Shibayama Keigo1,Doi Yohei1,Shibata Naohiro1,Yagi Tetsuya1,Nada Toshi2,Iinuma Yoshitsugu2,Arakawa Yoshichika1

Affiliation:

1. Department of Bacterial and Blood Products, National Institute of Infectious Diseases, Tokyo 208-0011,1 and

2. Department of Clinical Laboratory, Nagoya University Hospital, Nagoya 466-8560,2 Japan

Abstract

ABSTRACT The enhanced gastric epithelial cell apoptosis observed during infection with Helicobacter pylori has been suggested to be of significance in the etiology of gastritis, peptic ulcers, and neoplasia. To investigate the cell death signaling induced by H. pylori infection, human gastric epithelial cells were incubated with H. pylori for up to 72 h. H. pylori infection induced the activation of caspase -8, -9, and -3 and the expression of the proapoptotic Bcl-2 family proteins Bad and Bid. The peak of the activity of the caspases occurred at 24 h. At this time, the inhibition of caspase-8 or -9 almost completely suppressed H. pylori -induced apoptosis. Inhibition of caspase-8 suppressed the expression of Bad and Bid and the subsequent activation of caspase-9 and -3. These observations indicate that H. pylori induces apoptosis through a pathway involving the sequential induction of apical caspase-8 activity, the proapoptotic proteins Bad and Bid, caspase-9 activity, and effector caspase-3 activity. Activation of the pathway was independent of CagA or vacuolating toxin. A membrane fraction of H. pylori was sufficient to activate this pathway, and treatment with proteinase K eliminated the activity. Apoptotic activity of the membrane fraction was significantly increased by incubating the bacteria under serum-starved conditions for 24 h. These observations suggest that environmental conditions in the human stomach could induce H. pylori -mediated pathogenesis, leading to a variety of clinical outcomes.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3