Use of Bacteriophage Ba1 To Identify Properties Associated with Bordetella avium Virulence

Author:

Shelton Celia B.1,Temple Louise M.2,Orndorff Paul E.1

Affiliation:

1. Department of Microbiology, Pathology, and Parasitology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606

2. Department of Biology, Drew University, Madison, New Jersey 07940

Abstract

ABSTRACT Bordetella avium causes bordetellosis, an upper respiratory disease of birds. Commercially raised turkeys are particularly susceptible. We report here on the use of a recently described B. avium bacteriophage, Ba1, as a tool for investigating the effects of lysogeny and phage resistance on virulence. We found that lysogeny had no effect on any of the in vivo or in vitro measurements of virulence we employed. However, two-thirds (six of nine) spontaneous phage-resistant mutants of our virulent laboratory strain, 197N, were attenuated. Phage resistance was associated, in all cases, with an inability of the mutants to bind phage. Further tests of the mutants revealed that all had increased sensitivities to surfactants, and increased amounts of incomplete (O-antigen-deficient) lipopolysaccharide (LPS) compared to 197N. Hot phenol-water-extracted 197N LPS inactivated phage in a specific and dose-dependent manner. Acid hydrolysis and removal of lipid A had little effect upon the ability of isolated LPS to inactivate Ba1, suggesting that the core region and possibly the O antigen were required for phage binding. All of the mutants, with one exception, were significantly more sensitive to naive turkey serum and, without exception, significantly less able to bind to tracheal rings in vitro than 197N. Interestingly, the three phage-resistant mutants that remained virulent appeared to be O antigen deficient and were among the mutants that were the most serum sensitive and least able to bind turkey tracheal rings in vitro. This observation allowed us to conclude that even severe defects in tracheal ring binding and serum resistance manifested in vitro were not necessarily indicative of attenuation and that complete LPS may not be required for virulence.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference28 articles.

1. Akeila, M. A., and Y. M. Saif. 1988. Protection of turkey poults from Bordetella avium infection and disease by pili and bacterins. Avian Dis.32:641-649.

2. Arp, L. H., and N. F. Cheville. 1984. Tracheal lesions in young turkeys infected with Bordetella avium. Am. J. Vet. Res.45:2196-2200.

3. Arp, L. H., R. D. Leah, and R. W. Griffith. 1988. Adherence of Bordetella avium to tracheal mucosa of turkeys: correlation with hemagglutination. Am. J. Vet. Res.49:693-696.

4. Ashwell G. 1966. New colorimetric methods of sugar analysis . Methods Enzymol. 8: 85-95.

5. Barksdale, L., and S. B. Arden. 1974. Persisting bacteriophage infections, lysogeny and phage conversions. Annu. Rev. Microbiol.28:265-299.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3