Affiliation:
1. Department of Medicine, Division of Infectious Diseases, University of California, Irvine, School of Medicine, Irvine, California
Abstract
ABSTRACT
Antibodies can prevent lentivirus infections in animals and may play a role in controlling viral burden in established infection. In preventing and particularly in controlling infection, antibodies likely function in the presence of large quantities of virus. In this study, we explored the mechanisms by which antibodies neutralize large inocula of human immunodeficiency virus type 1 (HIV-1) on different target cells. Immunoglobulin G (IgG) from HIV-infected patients was tested for neutralizing activity against primary R5 strains of HIV-1 at inocula ranging from 100 to 20,000 50% tissue culture infective doses. At all virus inocula, inhibition by antibody was enhanced when target cells for virus growth were monocyte-depleted, peripheral blood mononuclear cells (PBMCs) rather than CD4
+
lymphocytes. However, enhanced inhibition on PBMCs was greatest with larger amounts of virus. Depleting PBMCs of natural killer (NK) cells, which express Fc receptors for IgG (FcγRs), abrogated the enhanced antibody inhibition, whereas adding NK cells to CD4
+
lymphocytes restored inhibition. There was no enhanced inhibition on PBMCs when F(ab′)
2
was used. Further experiments demonstrated that the release of β-chemokines, most likely through FcγR triggering of NK cells, contributed modestly to the antiviral activity of antibody on PBMCs and that antibody-coated virus adsorbed to uninfected cells provided a target for NK cell-mediated inhibition of HIV-1. These results indicate that Fc-FcγR interactions enhance the ability of antibody to neutralize HIV-1. Since FcγR-bearing cells are always present in vivo, FcγR-mediated antibody function may play a role in the ability of antibody to control lentivirus infection.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Reference47 articles.
1. Alamo, A. L., and S. J. Melnick. 2000. Clinical application of four and five-color flow cytometry lymphocyte subset immunophenotyping. Cytometry42:363-370.
2. Baba, T. W., V. Liska, R. Hofmann-Lehmann, J. Vlasak, W. Xu, S. Ayehunie, L. A. Cavacini, M. R. Posner, H. Katinger, G. Stiegler, B. J. Bernacky, T. A. Rizvi, R. Schmidt, L. R. Hill, M. E. Keeling, Y. Lu, J. E. Wright, T. C. Chou, and R. M. Ruprecht. 2000. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat. Med.6:200-206.
3. Structural Analysis of the Epitope of the Anti-HIV Antibody 2F5 Sheds Light into Its Mechanism of Neutralization and HIV Fusion
4. Baum, L. L., K. J. Cassutt, K. Knigge, R. Khattri, J. Margolick, C. Rinaldo, C. A. Kleeberger, P. Nishanian, D. R. Henrard, and J. Phair. 1996. HIV-1 gp120-specific antibody-dependent cell-mediated cytotoxicity correlates with rate of disease progression. J. Immunol.157:2168-2173.
5. Binley, J. M., B. Clas, A. Gettie, M. Vesanen, D. C. Montefiori, L. Sawyer, J. Booth, M. Lewis, P. A. Marx, S. Bonhoeffer, and J. P. Moore. 2000. Passive infusion of immune serum into simian immunodeficiency virus-infected rhesus macaques undergoing a rapid disease course has minimal effect on plasma viremia. Virology270:237-249.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献