A Comprehensive Model That Explains the Regulation of Phospholipase D2 Activity by Phosphorylation-Dephosphorylation

Author:

Henkels Karen M.1,Peng Hong-Juan1,Frondorf Kathleen1,Gomez-Cambronero Julian1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, Ohio 45435

Abstract

ABSTRACT We report here that the enzymatic activity of phospholipase D2 (PLD2) is regulated by phosphorylation-dephosphorylation. Phosphatase treatment of PLD2-overexpressing cells showed a biphasic nature of changes in activity that indicated the existence of “activator” and “inhibitory” sites. We identified three kinases capable of phosphorylating PLD2 in vitro —epidermal growth factor receptor (EGFR), JAK3, and Src (with JAK3 reported for the first time in this study)—that phosphorylate an inhibitory, an activator, and an ambivalent (one that can yield either effect) site, respectively. Mass spectrometry analyses indicated the target of each of these kinases as Y 296 for EGFR, Y 415 for JAK3, and Y 511 for Src. The extent to which each site is activated or inhibited depends on the cell type considered. In COS-7, cells that show the highest level of PLD2 activity, the Y 415 is a prominent site, and JAK3 compensates the negative modulation by EGFR on Y 296 . In MCF-7, cells that show the lowest level of PLD2 activity, the converse is the case, with Y 296 unable to compensate the positive modulation by Y 415 . MTLn3, with medium to low levels of lipase activity, show an intermediate pattern of regulation but closer to MCF-7 than to COS-7 cells. The negative effect of EGFR on the two cancer cell lines MTLn3 and MCF-7 is further proven by RNA silencing experiments that yield COS-7 showing lower PLD2 activity, and MTLn3 and MCF-7 cells showing an elevated activity. MCF-7 is a cancer cell line derived from a low-aggressive/invasive form of breast cancer that has relatively low levels of PLD activity. We propose that PLD2 activity is low in the breast cancer cell line MCF-7 because it is kept downregulated by tyrosyl phosphorylation of Y 296 by EGFR kinase. Thus, phosphorylation of PLD2-Y 296 could be the signal for lowering the level of PLD2 activity in transformed cells with low invasive capabilities.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3