A Cytoplasmic Antiholin Is Embedded In Frame with the Holin in a Lactobacillus fermentum Bacteriophage

Author:

Guo Tingting1,Xin Yongping1,Zhang Chenchen1,Kong Jian1

Affiliation:

1. State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China

Abstract

ABSTRACT In double-stranded DNA bacteriophages, infection cycles are ended by host cell lysis through the action of phage-encoded endolysins and holins. The precise timing of lysis is regulated by the holin inhibitors, named antiholins. Sequence analysis has revealed that holins with a single transmembrane domain (TMD) are prevalent in Lactobacillus bacteriophages. A temperate bacteriophage of Lactobacillus fermentum , ϕPYB5, has a two-component lysis cassette containing endolysin Lyb5 and holin Hyb5. The hyb5 gene is 465 bp long, encoding 154 amino acid residues with an N-terminal TMD and a large cytoplasmic C-terminal domain. However, the N terminus contains no dual-start motif, suggesting that Hyb5 oligomerization could be inhibited by a specific antiholin. Two internal open reading frames in hyb5 , hyb5 157–465 and hyb5 209–328 , were identified as genes encoding putative antiholins for Hyb5 and were coexpressed in trans with lyb5-hyb5 in Escherichia coli . Surprisingly, host cell lysis was delayed by Hyb5 157–465 but accelerated by abolishment of the translation initiation site of this protein, indicating that Hyb5 157–465 acts as an antiholin to holin Hyb5. Moreover, deletion of 45 amino acid residues at the C terminus of Hyb5 resulted in early cell lysis, even in the presence of Hyb5 157–465 , implying that the interaction between Hyb5 157–465 and Hyb5 occurs at the C terminus of the holin. In vivo and in vitro , Hyb5 157–465 and Hyb5 were detected in the cytoplasmic and membrane fractions, respectively, and pulldown assays confirmed direct interaction between Hyb5 157–465 and Hyb5. All the results suggest that Hyb5 157–465 is an antiholin of Hyb5 that is involved in lysis timing. IMPORTANCE Phage-encoded holins are considered to be the “molecular clock” of phage infection cycles. The interaction between a holin and its inhibitor antiholin precisely regulates the timing of lysis of the host cells. As a prominent biological group in dairy processes, phages of lactic acid bacteria (LAB) have been extensively genome sequenced. However, little is known about the antiholins of LAB phage holins and the holin-antiholin interactions. In this work, we identified an in-frame antiholin against the class III holin of Lactobacillus fermentum phage ϕPYB5, Hyb5, and demonstrated its interaction with the cognate holin, which occurred in the bacterial cytoplasm.

Funder

National Key Research and Development Program of China

Public Service Sectors (Agriculture) Special and Scientific Research Projects

National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3