Rhizobium meliloti mutants that overproduce the R. meliloti acidic calcofluor-binding exopolysaccharide

Author:

Doherty D1,Leigh J A1,Glazebrook J1,Walker G C1

Affiliation:

1. Biology Department, Massachusetts Institute of Technology, Cambridge 02139.

Abstract

The acidic Calcofluor-binding exopolysaccharide of Rhizobium meliloti Rm1021 plays one or more critical roles in nodule invasion and possibly in nodule development. Two loci, exoR and exoS, that affect the regulation of synthesis of this exopolysaccharide were identified by screening for derivatives of strain Rm1021 that formed mucoid colonies that fluoresced extremely brightly under UV light when grown on medium containing Calcofluor. The exopolysaccharide produced in large quantities by the exoR95::Tn5 and exoS96::Tn5 strains was indistinguishable from that produced by the parental strain Rm1021, and its synthesis required the function of at least the exoA, exoB, and exoF genes. Both the exoR and exoS loci were located on the chromosome, and the exo96::Tn5 mutation was 84% linked to the trp-33 mutation by phi M12 transduction. Synthesis of the Calcofluor-binding exopolysaccharide by strain Rm1021 was greatly stimulated by starvation for ammonia. In contrast, the exoR95::Tn5 mutant produced high levels of exopolysaccharide regardless of the presence or absence of ammonia in the medium. The exoS96::Tn5 mutant produced elevated amounts of exopolysaccharide in the presence of ammonia, but higher amounts were observed after starvation for ammonia. The presence of either mutation increased the level of expression of exoF::TnphoA and exoP::TnphoA fusions (TnphoA is Tn5 IS50L::phoA). Analyses of results obtained when alfalfa seedlings were inoculated with the exoR95::Tn5 strain indicated that the mutant strain could not invade nodules. However, pseudorevertants that retained the original exoR95::Tn5 mutation but acquired unlinked suppressors so that they produced an approximately normal amount of exopolysaccharide were able to invade nodules and fix nitrogens. The exoS95::Tn5 strain formed Fix+ nodules, although some minor variability was observed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3