Metabolic regulation in Streptomyces parvulus during actinomycin D synthesis, studied with 13C- and 15N-labeled precursors by 13C and 15N nuclear magnetic resonance spectroscopy and by gas chromatography-mass spectrometry

Author:

Inbar L1,Lapidot A1

Affiliation:

1. Isotope Department, Weizmann Institute, Rehovot, Israel.

Abstract

Recent studies have suggested that the onset of synthesis of actinomycin D in Streptomyces parvulus is due to a release from L-glutamate catabolic repression. In the present investigation we showed that S. parvulus has the capacity to maintain high levels of intracellular glutamate during the synthesis of actinomycin D. The results seem contradictory, since actinomycin D synthesis cannot start before a release from L-glutamate catabolic repression, but a relatively high intracellular pool of glutamate is needed for the synthesis of actinomycin D. Utilizing different labeled precursors, D-[U-13C]fructose and 13C- and 15N-labeled L-glutamate, and nuclear magnetic resonance techniques, we showed that carbon atoms of an intracellular glutamate pool of S. parvulus were not derived biosynthetically from the culture medium glutamate source but rather from D-fructose catabolism. A new intracellular pyrimidine derivative whose nitrogen and carbon skeletons were derived from exogenous L-glutamate was obtained as the main glutamate metabolite. Another new pyrimidine derivative that had a significantly reduced intracellular mobility and that was derived from D-fructose catabolism was identified in the cell extracts of S. parvulus during actinomycin D synthesis. These pyrimidine derivatives may serve as a nitrogen store for actinomycin D synthesis. In the present study, the N-trimethyl group of a choline derivative was observed by 13C nuclear magnetic resonance spectroscopy in growing S. parvulus cells. The choline group, as well as the N-methyl groups of sarcosine, N-methyl-valine, and the methyl groups of an actinomycin D chromophore, arose from D-fructose catabolism. The 13C enrichments found in the peptide moieties of actinomycin D were in accordance with a mechanism of actinomycin D synthesis from L-glutamate and D-fructose.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference31 articles.

1. Biemann K. 1962. Mass spectrometry organic chemical applications p. 223-227. McGraw-Hill Book Co. New York.

2. A 13C NMR study of actinomycin D and related model peptides;Booth H.;Org. Magn. Reson.,1976

3. Carbon-13 nuclear-magnetic-resonance spectroscopy of whole cells and of cytochrome c from Neurospora crassa grown with [S-Me-13C]methionine;Eakln R. T.;Biochem. J.,1975

4. Control of actinomycin D biosynthesis in Streptomyces parvulus: regulation of tryptophan oxygenase activity;Foster J. W.;J. Bacteriol.,1981

5. Regulation of secondary metabolite biosynthesis. Catabolite repression of phenoxazinone synthase and actinomycin formation by glucose;Gaflo M.;J. Bacteriol.,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3