Proline-specific endopeptidases from microbial sources: isolation of an enzyme from a Xanthomonas sp

Author:

Szwajcer-Dey E1,Rasmussen J1,Meldal M1,Breddam K1

Affiliation:

1. Carlsberg Research Laboratory, Valby, Denmark.

Abstract

An extensive screening among microorganisms for the presence of post-proline-specific endopeptidase activity was performed. This activity was found among ordinary bacteria from soil samples but not among fungi and actinomycetes. This result is in contrast to the previous notion that this activity is confined to the genus Flavobacterium. A proline endopeptidase was isolated from a Xanthomonas sp. and characterized with respect to physicochemical and enzymatic properties. The enzyme is composed of a single peptide chain with a molecular weight of 75,000. The isoelectric point is 6.2. It is inhibited by diisopropylfluorophosphate and may therefore be classified as a serine endopeptidase. The activity profile is bell shaped with an optimum at pH 7.5. By using synthetic peptide substrates and intramolecular fluorescence quenching it was possible to study the influence of substrate structure on the rate of hydrolysis. The enzyme specifically hydrolyzed Pro-X peptide bonds. With Glu at position X, low rates of hydrolysis were observed; otherwise the enzyme exhibited little preference for particular amino acid residues at position X. A similar substrate preference was observed with respect to the amino acid residue preceding the prolyl residue in the substrate. The enzyme required a minimum of two amino acid residues toward the N terminus from the scissile bond, but further elongation of the peptide chain by up to six amino acid residues caused only a threefold increase in the rate of hydrolysis. Attempts to cleave at the prolyl residues in oxidized RNase failed, indicating that the enzyme does not hydrolyze long peptides, a peculiar property it shares with other proline-specific endopeptidases.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3