FolX and FolM Are Essential for Tetrahydromonapterin Synthesis in Escherichia coli and Pseudomonas aeruginosa

Author:

Pribat Anne1,Blaby Ian K.2,Lara-Núñez Aurora3,Gregory Jesse F.3,de Crécy-Lagard Valérie2,Hanson Andrew D.1

Affiliation:

1. Horticultural Sciences Department

2. Microbiology and Cell Science Department

3. Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611

Abstract

ABSTRACT Tetrahydromonapterin is a major pterin in Escherichia coli and is hypothesized to be the cofactor for phenylalanine hydroxylase (PhhA) in Pseudomonas aeruginosa , but neither its biosynthetic origin nor its cofactor role has been clearly demonstrated. A comparative genomics analysis implicated the enigmatic folX and folM genes in tetrahydromonapterin synthesis via their phyletic distribution and chromosomal clustering patterns. folX encodes dihydroneopterin triphosphate epimerase, which interconverts dihydroneopterin triphosphate and dihydromonapterin triphosphate. folM encodes an unusual short-chain dehydrogenase/reductase known to have dihydrofolate and dihydrobiopterin reductase activity. The roles of FolX and FolM were tested experimentally first in E. coli , which lacks PhhA and in which the expression of P. aeruginosa PhhA plus the recycling enzyme pterin 4a-carbinolamine dehydratase, PhhB, rescues tyrosine auxotrophy. This rescue was abrogated by deleting folX or folM and restored by expressing the deleted gene from a plasmid. The folX deletion selectively eliminated tetrahydromonapterin production, which far exceeded folate production. Purified FolM showed high, NADPH-dependent dihydromonapterin reductase activity. These results were substantiated in P. aeruginosa by deleting tyrA (making PhhA the sole source of tyrosine) and folX . The Δ tyrA strain was, as expected, prototrophic for tyrosine, whereas the Δ tyrA Δ folX strain was auxotrophic. As in E. coli , the folX deletant lacked tetrahydromonapterin. Collectively, these data establish that tetrahydromonapterin formation requires both FolX and FolM, that tetrahydromonapterin is the physiological cofactor for PhhA, and that tetrahydromonapterin can outrank folate as an end product of pterin biosynthesis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3