Affiliation:
1. School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton BN2 4GJ, United Kingdom
Abstract
ABSTRACT
To cause an infection, bacteriophages must penetrate the alginate exopolysaccharide of
Pseudomonas aeruginosa
to reach the bacterial surface. Despite a lack of intrinsic motility, phage were shown to diffuse through alginate gels at alginate concentrations up to 8% (wt/vol) and to bring about a 2-log reduction in the cell numbers in 20-day-old biofilms of
P. aeruginosa
. The inability of alginate to act as a more effective diffusional barrier suggests that phage may cause a reduction in the viscosity of the exopolysaccharide. Samples (
n
= 5) of commercial alginate and purified cystic fibrosis (CF) alginate were incubated with 2 × 10
8
purified phage per ml for 24 h at 37°C. After incubation the samples and controls were subjected to rheological analysis with a Carrimed controlled stress rheometer. The viscosities of phage-treated samples were reduced by up to 40% compared to those of controls incubated in the absence of phage. The experiment was repeated by using phage concentrations of 10
10
and 10
12
phage per ml and samples taken for analysis at intervals up to 4 h. The results indicated that there was a time- and concentration-dependent reduction in viscosity of up to 40% compared to the viscosities of the controls. Commercial and purified CF alginate samples, both phage treated and untreated, were subjected to gel filtration chromatography by using Sephacryl High Resolution S-400 medium in order to obtain evidence of degradation. The results demonstrated that alginate treated with phage had a lower molecular weight than untreated alginate. The data suggest that bacteriophage migration through
P. aeruginosa
biofilms may be facilitated by a reduction in alginate viscosity brought about by enzymic degradation and that the source of the enzyme may be the bacterial host itself.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
197 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献