Distribution of cphA or related carbapenemase-encoding genes and production of carbapenemase activity in members of the genus Aeromonas

Author:

Rossolini G M1,Zanchi A1,Chiesurin A1,Amicosante G1,Satta G1,Guglielmetti P1

Affiliation:

1. Dipartimento di Biologia Molecolare, Università di Siena, Italy.

Abstract

The prevalence of the cphA gene or related carbapenemase-encoding genes was investigated in 114 Aeromonas strains belonging to the six species of major clinical interest. A species-related distribution of cphA-related sequences was observed. Similar sequences were found in A. hydrophila, A. veronii bv. sobria, A. veronii bv. veronii, and A. jandaei, but not in A. caviae, A. trota, or A. schubertii. However, a single A. caviae strain (of 62 tested) was found carrying cphA-related sequences, suggesting the possibility of the horizontal transfer of this gene to species which normally do not carry it. Production of carbapenemase activity was detectable in 83% of the hybridization-positive strains but in none of the hybridization-negative ones. When it was present, carbapenemase activity was always inhibitable by EDTA. Either carbapenemase-producing or not, Aeromonas strains appeared to be susceptible to imipenem when in vitro susceptibility testing was performed with inocula of conventional size (10(5) CFU), for which MICs were always < or = 1 microgram/ml. With a larger inoculum (10(8) CFU), the MICs for carbapenemase-negative strains always remained < or = 1 microgram/ml, while those for carbapenemase-producing strains were always > or = 4 micrograms/ml, being usually higher than the breakpoint for susceptibility. The present results indicate that the production of metallocarbapenemase activity, apparently encoded by cphA homologs, is widespread among some of the Aeromonas species of clinical interest (A. hydrophila, A. veronii bv. sobria, A. veronii bv. veronii, and A. jandaei) and that imipenem MICs for carbapenemase-producing strains are subjected to a relevant inoculum size effect.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3