Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells

Author:

Dingwell K S1,Brunetti C R1,Hendricks R L1,Tang Q1,Tang M1,Rainbow A J1,Johnson D C1

Affiliation:

1. Department of Pathology, McMaster University, Hamilton, Ontario, Canada.

Abstract

Herpes simplex virus (HSV) glycoproteins E and I (gE and gI) can act as a receptor for the Fc domain of immunoglobulin G (IgG). To examine the role of HSV IgG Fc receptor in viral pathogenesis, rabbits and mice were infected by the corneal route with HSV gE- or gI- mutants. Wild-type HSV-1 produced large dendritic lesions in the corneal epithelium and subsequent stromal disease leading to viral encephalitis, whereas gE- and gI- mutant viruses produced microscopic punctate or small dendritic lesions in the epithelium and no corneal disease or encephalitis. These differences were not related to the ability of the gE-gI oligomer to bind IgG because the differences were observed before the appearance of anti-HSV IgG and in mice, in which IgG binds to the Fc receptor poorly or not at all. Mutant viruses produced small plaques on monolayers of normal human fibroblasts and epithelial cells. Replication of gE- and gI- mutant viruses in human fibroblasts were normal, and the rates of entry of mutant and wild-type viruses into fibroblasts were similar; however, spread of gE- and gI- mutant viruses from cell to cell was significantly slower than that of wild-type HSV-1. In experiments in which fibroblast monolayers were infected with low multiplicities of virus and multiple rounds of infection occurred, the presence of neutralizing antibodies in the culture medium caused the yields of mutant viruses to drop dramatically, whereas there was a lesser effect on the production of wild-type HSV. It appears that cell-to-cell transmission of wild-type HSV-1 occurs by at least two mechanisms: (i) release of virus from cells and entry of extracellular virus into a neighboring cell and (ii) transfer of virus across cell junctions in a manner resistant to neutralizing antibodies. Our results suggest that gE- and gI- mutants are defective in the latter mechanism of spread, suggesting the possibility that the gE-gI complex facilitates virus transfer across cell junctions, a mode of spread which may predominate in some tissues. It is ironic that the gE-gI complex, usually considered an IgG Fc receptor, may, through its ability to mediate cell-to-cell spread, actually protect HSV from IgG in a manner different than previously thought.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3