Integration of the Second Messenger c-di-GMP into the Chemotactic Signaling Pathway

Author:

Russell Matthew H.1,Bible Amber N.1,Fang Xin2,Gooding Jessica R.3,Campagna Shawn R.3,Gomelsky Mark2,Alexandre Gladys1

Affiliation:

1. Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA

2. Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, USA

3. Department of Chemistry, University of Tennessee, Knoxville, Tennessee, USA

Abstract

ABSTRACT Elevated intracellular levels of the bacterial second messenger c-di-GMP are known to suppress motility and promote sessility. Bacterial chemotaxis guides motile cells in gradients of attractants and repellents over broad concentration ranges, thus allowing bacteria to quickly adapt to changes in their surroundings. Here, we describe a chemotaxis receptor that enhances, as opposed to suppresses, motility in response to temporary increases in intracellular c-di-GMP. Azospirillum brasilense ’s preferred metabolism is adapted to microaerophily, and these motile cells quickly navigate to zones of low oxygen concentration by aerotaxis. We observed that changes in oxygen concentration result in rapid changes in intracellular c-di-GMP levels. The aerotaxis and chemotaxis receptor, Tlp1, binds c-di-GMP via its C-terminal PilZ domain and promotes persistent motility by increasing swimming velocity and decreasing swimming reversal frequency, which helps A. brasilense reach low-oxygen zones. If c-di-GMP levels remain high for extended periods, A. brasilense forms nonmotile clumps or biofilms on abiotic surfaces. These results suggest that association of increased c-di-GMP levels with sessility is correct on a long-term scale, while in the short-term c-di-GMP may actually promote, as opposed to suppress, motility. Our data suggest that sensing c-di-GMP by Tlp1 functions similar to methylation-based adaptation. Numerous chemotaxis receptors contain C-terminal PilZ domains or other sensory domains, suggesting that intracellular c-di-GMP as well as additional stimuli can be used to modulate adaptation of bacterial chemotaxis receptors. IMPORTANCE To adapt and compete under changing conditions, bacteria must not only detect and respond to various environmental cues but also be able to remain sensitive to further changes in the environmental conditions. In bacterial chemotaxis, chemosensory sensitivity is typically brought about by changes in the methylation status of chemotaxis receptors capable of modulating the ability of motile cells to navigate in gradients of various physicochemical cues. Here, we show that the ubiquitous second messenger c-di-GMP functions to modulate chemosensory sensitivity of a bacterial chemotaxis receptor in the alphaproteobacterium Azospirillum brasilense . Binding of c-di-GMP to the chemotaxis receptor promotes motility under conditions of elevated intracellular c-di-GMP levels. Our results revealed that the role of c-di-GMP as a sessile signal is overly simplistic. We also show that adaptation by sensing an intracellular metabolic cue, via PilZ or other domains, is likely widespread among bacterial chemotaxis receptors.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3