The Role of Clonal Interference in the Evolutionary Dynamics of Plasmid-Host Adaptation

Author:

Hughes Julie M.12,Lohman Brian K.12,Deckert Gail E.12,Nichols Eric P.3,Settles Matt2,Abdo Zaid24,Top Eva M.12

Affiliation:

1. Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA

2. Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA

3. Department of Computer Science, Indiana University, Bloomington, Indiana, USA

4. Department of Mathematics and Statistics, University of Idaho, Moscow, Idaho, USA

Abstract

ABSTRACT Promiscuous plasmids replicate in a wide range of bacteria and therefore play a key role in the dissemination of various host-beneficial traits, including antibiotic resistance. Despite the medical relevance, little is known about the evolutionary dynamics through which drug resistance plasmids adapt to new hosts and thereby persist in the absence of antibiotics. We previously showed that the incompatibility group P-1 (IncP-1) minireplicon pMS0506 drastically improved its stability in novel host Shewanella oneidensis MR-1 after 1,000 generations under antibiotic selection for the plasmid. The only mutations found were those affecting the N terminus of the plasmid replication initiation protein TrfA1. Our aim in this study was to gain insight into the dynamics of plasmid evolution. Changes in stability and genotype frequencies of pMS0506 were monitored in evolving populations of MR-1 (pMS0506). Genotypes were determined by sequencing trfA1 amplicons from individual clones and by 454 pyrosequencing of whole plasmids from entire populations. Stability of pMS0506 drastically improved by generation 200. Many evolved plasmid genotypes with point mutations as well as in-frame and frameshift deletions and duplications in trfA1 were observed in all lineages with both sequencing methods. Strikingly, multiple genotypes were simultaneously present at high frequencies (>10%) in each population. Their relative abundances changed over time, but after 1,000 generations only one or two genotypes dominated the populations. This suggests that hosts with different plasmid genotypes were competing with each other, thus affecting the evolutionary trajectory. Plasmids can thus rapidly improve their stability, and clonal interference plays a significant role in plasmid-host adaptation dynamics. IMPORTANCE Promiscuous plasmids play an important role in the spread of antibiotic resistance and many other traits between closely and distantly related bacteria. However, little is known about the dynamics by which these broad-host-range antibiotic resistance plasmids adapt to novel bacteria and thereby become more persistent, even in the absence of antibiotics. In this study, we show that after no more than 200 generations of growth in the presence of antibiotics, a plasmid that was initially poorly maintained in a novel bacterial host evolved to become drastically more persistent in the absence of antibiotics. In each of the evolving populations, an unexpectedly large number of bacterial variants arose with distinct mutations in the plasmid’s replication initiation protein. Our results suggest that clonal interference, characterized by competition between variant clones in a population, plays a major role in the evolution of the persistence of drug resistance.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3