Biofilm formation by Candida species on the surface of catheter materials in vitro

Author:

Hawser S P1,Douglas L J1

Affiliation:

1. Department of Microbiology, University of Glasgow, United Kingdom.

Abstract

A model system for studying Candida biofilms growing on the surface of small discs of catheter material is described. Biofilm formation was determined quantitatively by a colorimetric assay involving reduction of a tetrazolium salt or by [3H]leucine incorporation; both methods gave excellent correlation with biofilm dry weight (r = 0.997 and 0.945, respectively). Growth of Candida albicans biofilms in medium containing 500 mM galactose or 50 mM glucose reached a maximum after 48 h and then declined; however, the cell yield was lower in low-glucose medium. Comparison of biofilm formation by 15 different isolates of C. albicans failed to reveal any correlation with pathogenicity within this group, but there was some correlation with pathogenicity when different Candida species were tested. Isolates of C. parapsilosis (Glasgow), C. pseudotropicalis, and C. glabrata all gave significantly less biofilm growth (P < 0.001) than the more pathogenic C. albicans. Evaluation of various catheter materials showed that biofilm formation by C. albicans was slightly increased on latex or silicone elastomer (P < 0.05), compared with polyvinyl chloride, but substantially decreased on polyurethane or 100% silicone (P < 0.001). Scanning electron microscopy demonstrated that after 48 h, C. albicans biofilms consisted of a dense network of yeasts, germ tubes, pseudohyphae, and hyphae; extracellular polymeric material was visible on the surfaces of some of these morphological forms. Our model system is a simple and convenient method for studying Candida biofilms and could be used for testing the efficacy of antifungal agents against biofilm cells.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference31 articles.

1. Sensitivity of biofilms to antimicrobial agents;Brown M. R. W.;J. Appl. Bacteriol. Symp. Suppl.,1993

2. Adherence and receptor relationships of Candida albicans;Calderone R. A.;Microbiol. Rev.,1991

3. Characklis W. G. and P. A. Wilderer. 1989. Structure and function of biofilms. Wiley Chichester United Kingdom.

4. Bacterial biofilms in nature and disease. Annu;Costerton J. W.;Rev. Microbiol.,1987

5. Fungal infections;Cox G. M.;Curr. Opin. Infect. Dis.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3