Catalytic Mechanism of Cyclic Di-GMP-Specific Phosphodiesterase: a Study of the EAL Domain-Containing RocR from Pseudomonas aeruginosa

Author:

Rao Feng1,Yang Ye2,Qi Yaning1,Liang Zhao-Xun1

Affiliation:

1. Division of Chemical Biology and Biotechnology

2. Division of Computational and Structural Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore

Abstract

ABSTRACT EAL domain proteins are the major phosphodiesterases for maintaining the cellular concentration of second-messenger cyclic di-GMP in bacteria. Given the pivotal roles of EAL domains in the regulation of many bacterial behaviors, the elucidation of their catalytic and regulatory mechanisms would contribute to the effort of deciphering the cyclic di-GMP signaling network. Here, we present data to show that RocR, an EAL domain protein that regulates the expression of virulence genes and biofilm formation in Pseudomonas aeruginosa PAO-1, catalyzes the hydrolysis of cyclic di-GMP by using a general base-catalyzed mechanism with the assistance of Mg 2+ ion. In addition to the five essential residues involved in Mg 2+ binding, we propose that the essential residue E 352 functions as a general base catalyst assisting the deprotonation of Mg 2+ -coordinated water to generate the nucleophilic hydroxide ion. The mutation of other conserved residues caused various degree of changes in the k cat or K m , leading us to propose their roles in residue positioning and substrate binding. With functions assigned to the conserved groups in the active site, we discuss the molecular basis for the lack of activity of some characterized EAL domain proteins and the possibility of predicting the phosphodiesterase activities for the vast number of EAL domains in bacterial genomes in light of the catalytic mechanism.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3