High-level mupirocin resistance in Staphylococcus aureus: evidence for two distinct isoleucyl-tRNA synthetases

Author:

Gilbart J1,Perry C R1,Slocombe B1

Affiliation:

1. SmithKline Beecham Pharmaceuticals, Betchworth, Surrey, United Kingdom.

Abstract

Mupirocin resistance in Staphylococcus aureus results from changes in the target enzyme, isoleucyl-tRNA synthetase (IRS). Twelve strains of S. aureus comprising four susceptible (MICs < or = 4 micrograms/ml), four intermediate level-resistant (MICs between 8 and 256 micrograms/ml), and four highly resistant (MICs > or = 512 micrograms/ml) isolates were examined for their IRS content and the presence of a gene known to encode high-level mupirocin resistance. Ion-exchange chromatography of cell extracts showed a single IRS active peak in mupirocin-susceptible strains, with 50% inhibitory concentrations (IC50s) of 0.7 to 3.0 ng of mupirocin per ml. In strains showing intermediate mupirocin resistance, similar single IRS activity peaks were observed, but these were less sensitive to inhibition, and the mupirocin IC50s for them were 19 to 43 ng/ml. Strains that were highly resistant to mupirocin displayed two distinct peaks; one was similar to that found with susceptible strains (IC50, 0.9 to 2.5 ng/ml), but an additional peak with an IC50 of 7,000 to 10,000 ng/ml was also observed. A strain cured of the plasmid encoding high-level mupirocin resistance lacked the resistant IRS peak. Restriction digests, produced by endonuclease NcoI, of total bacterial DNA isolated from the highly resistant strains hybridized with a mupirocin resistance gene probe, whereas DNA isolated from the intermediate level-resistant and susceptible strains did not. These results demonstrate that two different IRS enzymes were present in highly mupirocin-resistant S. aureus strains. In strains expressing intermediate levels of resistance, only a chromosomally encoded IRS which was inhibited less by mupirocin than IRS from fully susceptible strains was detected.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3