Dimethylsulfoniopropionate-Dependent Demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi

Author:

Reisch Chris R.1,Moran Mary Ann2,Whitman William B.1

Affiliation:

1. Departments of Microbiology

2. Marine Sciences, University of Georgia, Athens, Georgia 30602

Abstract

ABSTRACT The ubiquitous algal metabolite dimethylsulfoniopropionate (DMSP) is a major source of carbon and reduced sulfur for marine bacteria. Recently, the enzyme responsible for the demethylation of DMSP, designated DmdA, was identified, and homologs were found to be common in marine bacterioplankton cells. The recombinant DmdA proteins from the cultured marine bacteria Pelagibacter ubique HTCC1062 and Silicibacter pomeroyi DSS-3 were purified with a three-step procedure using anion-exchange, hydrophobic interaction, and hydroxyapatite chromatographies. The P. ubique enzyme possessed an M r on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 38,500. Under nondenaturing conditions, the M r was 68,000, suggesting that the enzyme was likely to be a dimer. The purified enzyme exhibited strict substrate specificity for DMSP, as DmdA from both S. pomeroyi and P. ubique possessed no detectable demethylase activity with glycine betaine, dimethyl glycine, methylmercaptopropionate, methionine, or dimethylsulfonioacetate. Less than 1% activity was found with dimethylsulfoniobutanoate and dimethylsulfoniopentanoate. The apparent K m s for DMSP were 13.2 ± 2.0 and 5.4 ± 2.3 mM for the P. ubique and S. pomeroyi enzymes, respectively. In cell extracts of S. pomeroyi DSS-3, the apparent K m for DMSP was 8.6 ± 1.2 mM, similar to that of purified recombinant DmdA. The intracellular concentration of DMSP in chemostat-grown S. pomeroyi DSS-3 was 70 mM. These results suggest that marine bacterioplankton may actively accumulate DMSP to osmotically significant concentrations that favor near-maximal rates of DMSP demethylation activity.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3