Affiliation:
1. Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark
2. Department of Veterinary Science, Queen's University Belfast
3. Veterinary Sciences Division, Department of Agriculture and Rural Development, Stormont, Belfast, United Kingdom
Abstract
ABSTRACT
Differential delayed-type hypersensitivity skin testing with tuberculin purified protein derivatives from
Mycobacterium bovis
and
M. avium
is the standard for diagnosing bovine tuberculosis. However, improved tests based on defined, specific antigens are urgently needed. In the present study, a combination of bioinformatics, molecular biology, and bovine models of infection were used to screen mycobacterial proteins for their potential as diagnostic reagents which could be used in a whole-blood assay for diagnosis of tuberculosis. Initial screening of 28 proteins selected in silico and expressed as recombinants in
Escherichia coli
indicated that CFP-10, ESAT-6, TB27.4, TB16.2, TB15.8, and TB10.4 induced strong gamma interferon responses in experimentally infected cattle. A more thorough investigation over time in two groups of animals infected with a high (10
6
CFU) and a low (10
4
CFU) dose of
M. bovis
revealed that, for both groups, the strength of the in vitro response to individual antigens varied greatly over time. However, combining the results for ESAT-6, CFP-10, and TB27.4, possibly supplemented with TB10.4, gave sensitivities at different infection stages close to those obtained with
M. bovis
purified protein derivative. Importantly, while responsiveness to ESAT-6 and CFP-10 correlated strongly for individual samples, the same was not the case for ESAT-6 and TB27.4 responsiveness. The results suggest that combinations of specific antigens such as these have great potential in development of optimized diagnostic systems for bovine tuberculosis.
Publisher
American Society for Microbiology
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献