Uptake of Streptococcus pneumoniae by respiratory epithelial cells

Author:

Talbot U M1,Paton A W1,Paton J C1

Affiliation:

1. Molecular Microbiology Unit, Women's and Children's Hospital, North Adelaide, South Australia, Australia.

Abstract

Although Streptococcus pneumoniae is the leading cause of community-acquired pneumonia in humans, the mechanism whereby the organism penetrates lung tissue is poorly understood. In the present study we have examined the capacity of pneumococci to penetrate A549 cells, a human lung alveolar carcinoma (type II pneumocyte) cell line. Not all clinical S. pneumoniae isolates initially tested were capable of penetration of the cells, as judged by resistance to extracellular antibiotics. The presence of a polysaccharide capsule also significantly reduced the capacity to both adhere to and penetrate A549 cells. Electron micrographs showed the presence of pneumococci enclosed within vacuoles of intact A549 cells, but bacteria were also seen free in the cytoplasm of damaged cells. Ongoing bacterial DNA, RNA, or protein synthesis was not essential for uptake of pneumococci by A549 cells, and uptake was not diminished by pretreatment of the pneumococci with trypsin. However, inhibition of A549 microfilament assembly with cytochalasin D abolished the phenomenon.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3