Steroid Receptor Coactivator 2 Is Critical for Progesterone-Dependent Uterine Function and Mammary Morphogenesis in the Mouse

Author:

Mukherjee Atish1,Soyal Selma M.1,Fernandez-Valdivia Rodrigo1,Gehin Martine2,Chambon Pierre2,DeMayo Francesco J.1,Lydon John P.1,O'Malley Bert W.1

Affiliation:

1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas

2. Institut Clinique de la Souris (ICS-IGBMC), BP10142, 67404 Illkirch Cedex, France

Abstract

ABSTRACT Although the essential involvement of the progesterone receptor (PR) in female reproductive tissues is firmly established, the coregulators preferentially enlisted by PR to mediate its physiological effects have yet to be fully delineated. To further dissect the roles of members of the steroid receptor coactivator (SRC)/p160 family in PR-mediated reproductive processes in vivo, state-of-the-art cre-loxP engineering strategies were employed to generate a mouse model ( PR Cre/+ SRC-2 flox/flox ) in which SRC-2 function was abrogated only in cell lineages that express the PR. Fertility tests revealed that while ovarian activity was normal, PR Cre/+ SRC-2 flox/flox mouse uterine function was severely compromised. Absence of SRC-2 in PR-positive uterine cells was shown to contribute to an early block in embryo implantation, a phenotype not shared by SRC-1 or -3 knockout mice. In addition, histological and molecular analyses revealed an inability of the PR Cre/+ SRC-2 flox/flox mouse uterus to undergo the necessary cellular and molecular changes that precede complete P-induced decidual progression. Moreover, removal of SRC-1 in the PR Cre/+ SRC-2 flox/flox mouse uterus resulted in the absence of a decidual response, confirming that uterine SRC-2 and -1 cooperate in P-initiated transcriptional programs which lead to full decidualization. In the case of the mammary gland, whole-mount and histological analysis disclosed the absence of significant ductal side branching and alveologenesis in the hormone-treated PR Cre/+ SRC-2 flox/flox mammary gland, reinforcing an important role for SRC-2 in cellular proliferative changes that require PR. We conclude that SRC-2 is appropriated by PR in a subset of transcriptional cascades obligate for normal uterine and mammary morphogenesis and function.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3