Iron Uptake in Ustilago maydis : Tracking the Iron Path

Author:

Ardon Orly1,Nudelman Raphael2,Caris Catherine2,Libman Jacqueline2,Shanzer Abraham2,Chen Yona3,Hadar Yitzhak1

Affiliation:

1. Department of Plant Pathology and Microbiology and The Otto Warburg Center for Agricultural Biotechnology1 and

2. Department of Organic Chemistry, The Weizmann Institute of Science,2 Rehovot 76100, Israel

3. Department of Soil and Water Sciences,3 Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, and

Abstract

ABSTRACT In this study, we monitored and compared the uptake of iron in the fungus Ustilago maydis by using biomimetic siderophore analogs of ferrichrome, the fungal native siderophore, and ferrioxamine B (FOB), a xenosiderophore. Ferrichrome-iron was taken up at a higher rate than FOB-iron. Unlike ferrichrome-mediated uptake, FOB-mediated iron transport involved an extracellular reduction mechanism. By using fluorescently labeled siderophore analogs, we monitored the time course, as well as the localization, of iron uptake processes within the fungal cells. A fluorescently labeled ferrichrome analog, B9-lissamine rhodamine B, which does not exhibit fluorescence quenching upon iron binding, was used to monitor the entry of the compounds into the fungal cells. The fluorescence was found intracellularly 4 h after the application and later was found concentrated in two to three vesicles within each cell. The fluorescence of the fluorescently labeled FOB analog CAT18, which is quenched by iron, was visualized around the cell membrane after 4 h of incubation with the ferrated (nonfluorescent) compounds. This fluorescence intensity increased with time, demonstrating fungal iron uptake from the siderophores, which remained extracellular. We here introduce the use of fluorescent biomimetic siderophores as tools to directly track and discriminate between different pathways of iron uptake in cells.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3