Affiliation:
1. Department of Plant Pathology and Microbiology and The Otto Warburg Center for Agricultural Biotechnology1 and
2. Department of Organic Chemistry, The Weizmann Institute of Science,2 Rehovot 76100, Israel
3. Department of Soil and Water Sciences,3 Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, and
Abstract
ABSTRACT
In this study, we monitored and compared the uptake of iron in the fungus
Ustilago maydis
by using biomimetic siderophore analogs of ferrichrome, the fungal native siderophore, and ferrioxamine B (FOB), a xenosiderophore. Ferrichrome-iron was taken up at a higher rate than FOB-iron. Unlike ferrichrome-mediated uptake, FOB-mediated iron transport involved an extracellular reduction mechanism. By using fluorescently labeled siderophore analogs, we monitored the time course, as well as the localization, of iron uptake processes within the fungal cells. A fluorescently labeled ferrichrome analog, B9-lissamine rhodamine B, which does not exhibit fluorescence quenching upon iron binding, was used to monitor the entry of the compounds into the fungal cells. The fluorescence was found intracellularly 4 h after the application and later was found concentrated in two to three vesicles within each cell. The fluorescence of the fluorescently labeled FOB analog CAT18, which is quenched by iron, was visualized around the cell membrane after 4 h of incubation with the ferrated (nonfluorescent) compounds. This fluorescence intensity increased with time, demonstrating fungal iron uptake from the siderophores, which remained extracellular. We here introduce the use of fluorescent biomimetic siderophores as tools to directly track and discriminate between different pathways of iron uptake in cells.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献