Primary structure and functional analysis of the soluble transducer protein HtrXI in the archaeon Halobacterium salinarium

Author:

Brooun A1,Zhang W1,Alam M1

Affiliation:

1. Department of Microbiology, University of Hawaii, Honolulu.

Abstract

Signal transduction in the archaeon Halobacterium salinarium is mediated by a family of 13 soluble and membrane-bound transducers. Here, we report the primary structure and functional analysis of one of the smallest halobacterial putative transducers, HtrXI. Hydropathy plot analysis of the primary structure predicts no membrane-spanning segments in HtrXI. The fractionation of the H. salinarium proteins confirmed that HtrXI is a soluble protein. Capillary assay with an HtrXI deletion mutant and a complemented strain revealed that this soluble transducer is involved in Asp and Glu taxis. In vivo analysis of the methylesterase activity of the htrXI-1 deletion mutant suggests that HtrXI plays an important role in the adaptation of the chemotactic responses to His, Asp, and Glu, which are attractants for halobacteria. Stimulation by Asp and Glu causes demethylation of HtrXI and of another putative transducer, HtrVII. But addition of His to halobacterial cells increases HtrXI methylation together with that of other putative transducers. In the absence of HtrXI, stimulation by either Glu or His does not decrease or increase the methylation of any putative transducers. Therefire, the HtrXI transducer appears to have a complex role in chemotaxis signal transduction.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference26 articles.

1. Methylaccepting taxis proteins in Halobacterium halobium;Alam M.;EMBO J.,1989

2. How bacteria sense and swim. Annu;Blair D. F.;Rev. Microbiol.,1995

3. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu;Bourret R. B.;Rev. Biochem.,1991

4. Brooun A. W. Zhang and M. Alam. Unpublished data.

5. Hyung Y. S. and M. Alam. Unpublished data.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3