Three different putative phosphate transport receptors are encoded by the Mycobacterium tuberculosis genome and are present at the surface of Mycobacterium bovis BCG

Author:

Lefèvre P1,Braibant M1,de Wit L1,Kalai M1,Röeper D1,Grötzinger J1,Delville J P1,Peirs P1,Ooms J1,Huygen K1,Content J1

Affiliation:

1. Department of Virology, Institut Pasteur, Brussels, Belgium.

Abstract

A gene encoding a protein homologous to the periplasmic ABC phosphate binding receptor PstS from Escherichia coli was cloned and sequenced from a lambda gt11 library of Mycobacterium tuberculosis by screening with monoclonal antibody 2A1-2. Its degree of similarity to the E. coli PstS is comparable to those of the previously described M. tuberculosis phosphate binding protein pab (Ag78, Ag5, or 38-kDa protein) and another M. tuberculosis protein which we identified recently. We suggest that the three M. tuberculosis proteins share a similar function and could be named PstS-1, PstS-2, and PstS-3, respectively. Molecular modeling of their three-dimensional structures using the structure of the E. coli PstS as a template and their inducibility by phosphate starvation support this view. Recombinant PstS-2 and PstS-3 were produced and purified by affinity chromatography. With PstS-1, these proteins were used to demonstrate the specificity of three groups of monoclonal antibodies. Using these antibodies in flow cytometry and immunoblotting analyses, we demonstrate that the three genes are expressed and their protein products are present and accessible at the mycobacterial surface as well as in its culture filtrate. Together with the M. tuberculosis genes encoding homologs of the PstA, PstB, and PstC components we cloned before, the present data suggest that at least one, and possibly several, related and functional ABC phosphate transporters exist in mycobacteria. It is hypothesized that the mycobacterial gene duplications presented here may be a subtle adaptation of intracellular pathogens to phosphate starvation in their alternating growth environments.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3