GATA-Dependent Expression of the Interleukin-1 Receptor-Related T1 Gene in Mast Cells

Author:

Gächter Thomas1,Moritz Dirk R.1,Gheyselinck Jaqueline1,Klemenz Roman1

Affiliation:

1. Division of Cancer Research, Department of Pathology, University Hospital, CH-8091 Zürich, Switzerland

Abstract

ABSTRACT The murine delayed-early serum-responsive gene T1 encodes glycoproteins of the interleukin-1 receptor family. Transcriptional initiation in fibroblasts is regulated by c-Fos and gives rise to a rare 5-kb mRNA and an abundant 2.7-kb mRNA. These transcripts are translated into a receptor-like membrane-anchored protein and a secreted protein consisting only of the ectodomain. In mast cells, T1 gene transcription is initiated 10.5 kb further upstream than in fibroblasts and gives rise predominantly to the 5-kb transcript under normal growth conditions. Here we demonstrate that calcium ionophore stimulation of mast cells resulted in an upregulation of T1 gene expression and a switch from the long to the short T1 transcript. This was paralleled by the disappearance of the receptor-type T1 protein on the mast cell surface and the secretion of large amounts of the truncated T1 protein. c-Fos and a T1 enhancer, which have previously been identified to be essential for T1 expression in fibroblasts, were not required for calcium ionophore-mediated T1 gene upregulation. Overexpression of the transcription factor GATA-1 in mast cells caused elevated T1 synthesis. Three GATA elements were identified in the minimal GATA-responsive mast cell promoter. Mutational analysis revealed that all three GATA elements are involved in T1 gene expression. Point mutations within the middle GATA element eliminated promoter activity completely, while mutations of the distal and proximal GATA binding sites reduced promoter strength by factors of 2 and 5, respectively. Exogenous expression of GATA-1 was not sufficient to activate the mast cell-specific promoter in NIH 3T3 fibroblasts.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3