Affiliation:
1. Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849
Abstract
ABSTRACT
The two-component alkanesulfonate monooxygenase system utilizes reduced flavin as a substrate to catalyze a unique desulfonation reaction during times of sulfur starvation. The importance of protein-protein interactions in the mechanism of flavin transfer was analyzed in these studies. The results from affinity chromatography and cross-linking experiments support the formation of a stable complex between the flavin mononucleotide (FMN) reductase (SsuE) and monooxygenase (SsuD). Interactions between the two proteins do not lead to overall conformational changes in protein structure, as indicated by the results from circular dichroism spectroscopy in the far-UV region. However, subtle changes in the flavin environment of FMN-bound SsuE that occur in the presence of SsuD were identified by circular dichroism spectroscopy in the visible region. These data are supported by the results from fluorescent spectroscopy experiments, where a dissociation constant of 0.0022 ± 0.0010 μM was obtained for the binding of SsuE to SsuD. Based on these studies, the stoichiometry for protein-protein interactions is proposed to involve a 1:1 monomeric association of SsuE with SsuD.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Reference30 articles.
1. Anderson, K. S., E. W. Miles, and K. A. Johnson. 1991. Serine modulates substrate channeling in tryptophan synthase. A novel intersubunit triggering mechanism. J. Biol. Chem. 266 : 8020-8033.
2. Auer, H. E., and F. E. Frerman. 1980. Circular dichroism studies of acyl-CoA dehydrogenase and electron transfer flavoprotein. J. Biol. Chem. 255 : 8157-8163.
3. Bruice, T. C. 1982. A progress report on studies of the activation of molecular oxygen by dihydroflavins, p. 265-277. In V. Massey and C. H. Williams (ed.), Flavins and flavoproteins. Elsevier North-Holland, Inc., New York, N.Y.
4. Eichhorn, E., C. A. Davey, D. F. Sargent, T. Leisinger, and T. J. Richmond. 2002. Crystal structure of Escherichia coli alkanesulfonate monooxygenase SsuD. J. Mol. Biol. 324 : 457-468.
5. Eichhorn, E., J. R. van der Ploeg, and T. Leisinger. 1999. Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. J. Biol. Chem. 247 : 26639-26646.
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献