Interferon Consensus Sequence Binding Protein (ICSBP) Decreases β-Catenin Activity in Myeloid Cells by Repressing GAS2 Transcription

Author:

Huang Weiqi1,Zhou Wei1,Saberwal Gurveen12,Konieczna Iwona1,Horvath Elizabeth12,Katsoulidis Efstratios1,Platanias Leonidas C.12,Eklund Elizabeth A.12

Affiliation:

1. Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois

2. Jesse Brown Veteran's Administration Medical Center, Chicago, Illinois

Abstract

ABSTRACT The interferon consensus sequence binding protein (ICSBP) is an interferon regulatory transcription factor, also referred to as IRF8. ICSBP acts as a suppressor of myeloid leukemia, although few target genes explaining this effect have been identified. In the current studies, we identified the gene encoding growth arrest specific 2 ( GAS2 ) as an ICSBP target gene relevant to leukemia suppression. We find that ICSBP, Tel, and histone deacetylase 3 (HDAC3) bind to a cis element in the GAS2 promoter and repress transcription in myeloid progenitor cells. Gas2 inhibits calpain protease activity, and β-catenin is a calpain substrate in these cells. Consistent with this, ICSBP decreases β-catenin protein and activity in a Gas2- and calpain-dependent manner. Conversely, decreased ICSBP expression increases β-catenin protein and activity by the same mechanism. This is of interest, because decreased ICSBP expression and increased β-catenin activity are associated with poor prognosis and blast crisis in chronic myeloid leukemia (CML). We find that the expression of Bcr/abl (the CML oncoprotein) increases Gas2 expression in an ICSBP-dependent manner. This results in decreased calpain activity and a consequent increase in β-catenin activity in Bcr/abl-positive (Bcr/abl + ) cells. Therefore, these studies have identified a Gas2/calpain-dependent mechanism by which ICSBP influences β-catenin activity in myeloid leukemia.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3