Activities of Several Classes of Acyclic Nucleoside Phosphonates against Camelpox Virus Replication in Different Cell Culture Models

Author:

Duraffour Sophie12,Snoeck Robert1,Krečmerová Marcela3,van Den Oord Joost4,De Vos Rita4,Holý Antonín3,Crance Jean-Marc2,Garin Daniel2,De Clercq Erik1,Andrei Graciela1

Affiliation:

1. Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10

2. CRSSA Emile Pardé, Virology Laboratory, 24 av des maquis du Grésivaudan, La Tronche, France

3. Gilead Sciences and IOCB Research Centre, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic

4. Pathology Department, U.Z. Leuven, Minderbroedersstraat 12, Leuven, Belgium

Abstract

ABSTRACT Camelpox virus (CMLV) is the closest known virus to variola virus. Here we report on the anti-CMLV activities of several acyclic nucleoside phosphonates (ANPs) related to cidofovir [( S )-1-(3-hydroxy-2-phosphonomethoxypropyl)cytosine (HPMPC; Vistide)] against two CMLV strains, CML1 and CML14. Cytopathic effect (CPE) reduction assays performed with human embryonic lung fibroblast monolayers revealed the selectivities of the first two classes of ANPs (cHPMPA, HPMPDAP, and HPMPO-DAPy) and of the hexadecyloxyethyl ester of 1-{[(5 S )-2-hydroxy-2-oxido-1,4,2-dioxaphosphinan-5-yl]methyl}-5-azacytosine (HDE-cHPMP-5-azaC), belonging to the newly synthesized ANPs, which are HPMP derivatives containing a 5-azacytosine moiety. The inhibitory activities of ANPs against both strains were also confirmed with primary human keratinocyte (PHK) monolayers, despite the higher toxicity of those molecules on growing PHKs. Virus yield assays confirmed the anti-CML1 and anti-CML14 efficacies of the compounds selected for the highest potencies in CPE reduction experiments. Ex vivo studies were performed with a 3-dimensional model of human skin, i.e., organotypic epithelial raft cultures of PHKs. It was ascertained by histological evaluation, as well as by virus yield assays, that CMLV replicated in the human skin equivalent. HPMPC and the newly synthesized ANPs proved to be effective at protecting the epithelial cells against CMLV-induced CPE. Moreover, in contrast to the toxicity on PHK monolayers, signs of toxicity in the differentiated epithelium were seen only at high ANP concentrations. Our results demonstrate that compounds belonging to the newly synthesized ANPs, in addition to cidofovir, represent promising candidates for the treatment of poxvirus infections.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3