Use of Resequencing Oligonucleotide Microarrays for Identification of Streptococcus pyogenes and Associated Antibiotic Resistance Determinants

Author:

Davignon Louis1,Walter Elizabeth A.23,Mueller Kate M.4,Barrozo Christopher P.5,Stenger David A.6,Lin Baochuan6

Affiliation:

1. Malcolm Grow Medical Center, Andrews Air Force Base, Maryland 20762

2. Epidemic Outbreak Surveillance Advanced Diagnostics Laboratory, Lackland Air Force Base, San Antonio, Texas 78236

3. Texas A&M University Systems, San Antonio, Texas 78223

4. Nova Research Inc., Alexandria, VA 22308

5. DoD Center for Deployment Health Research, Naval Health Research Center, San Diego, California 92152

6. Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, DC 20375

Abstract

ABSTRACT Group A streptococci (GAS) are responsible for a wide variety of human infections associated with considerable morbidity and mortality. Ever since the first systematic effort by Lancefield to group Streptococcus species by M protein variants, the detection and characterization of Streptococcus by different methods have been an evolving process. The ideal assay for GAS identification not only would provide quick and accurate diagnostic results but also would reveal antibiotic resistance patterns and genotype information, aiding not only in treatment but in epidemiologic assessment as well. The oligonucleotide microarray is a promising new technology which could potentially address this need. In this study, we evaluated the usefulness of oligonucleotide resequencing microarrays for identifying GAS and its associated antibiotic resistance markers. We demonstrated an assay platform that combines the use of resequencing DNA microarrays with either random nucleic acid amplification or multiplex PCR for GAS detection. When detecting Streptococcus pyogenes from coded clinical samples, this approach demonstrated an excellent concordance with a more established culture method. To this end, we showed the potential of resequencing microarrays for efficient and accurate detection of GAS and its associated antibiotic resistance markers with the benefit of sequencing information from microarray analysis.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3